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J. Phys. A: Math. Gen. 19 (1986) 337-347. Printed in Great Britain 

Completeness relations for the electromagnetic modes of a 
cylindrical fibre with a radially dependent dielectric and 
magnetic permittivity and conductivity 

B J Hoenders 
Department of Applied Physics, Rijksuniversiteit Groningen, Universiteitscomplex Pad- 
depoel, Nijenborgh 18, 9747 AG Groningen, The Netherlands 

Received 22 November 1984, in final form 17 June 1985 

Abstract. We consider an infinitely long conducting cylinder whose dielectric and magnetic 
permittivity and conductivity are functions of the distance from a point inside the cylinder 
to its axis. It is shown that the r-dependent part of the set of electromagnetic modes 
associated with such a cylinder is complete and orthogonal, and several completeness 
relations are constructed, which are different from those postulated in the literature. 

1. Introduction 

We consider a cylindrical rod (fibre) with radius b whose axis coincides with the z 
axis of a cylindrical coordinate system, r, C#J and z. The dielectric permeability E ,  the 
magnetic permeability p and conductivity U are supposed to be piecewise once 
continuously differentiable scalar functions of r. 

Figure 1. The configuration. 
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Connected with this fibre is a set of electromagnetic modes, which are defined as 
solutions of Maxwell’s equations both inside and outside the fibre, satisfying the 
continuity conditions at the boundary of the fibre. 

An interesting problem with many applications is the completeness of this set of 
modes in a plane perpendicular to the axis of the cylinder. Almost equally important 
is the construction of explicit expressions for the expansion coefficients once complete- 
ness has been shown. We refer with respect to these two problems to Tamir (1979, ch 
11) who proves the orthogonality relation 

( E t x H T ) d x d y = 6 ( P - P ’ ) ,  J J-r 
for the transverse parts of the electric and magnetic field vectors of the electromagnetic 
modes of a cylindrical fibre with constant E ,  p and a equal to zero. The parameter P 
stems from the ansatz 

E = E ( r ,  4; P )  exp(iPz1, H = H( r, 4; P )  exp(ipz). (1.2) 

The completeness of this set of modes does not follow from Titchmarsh’s (1970) book 
on Sturm-Liouville problems, as erroneously stated by Tamir and Oliner (1963), 
because Titchmarsh does not analyse Sturm-Liouville theory for systems of coupled 
differential equations. (See equations (2.15a, b) with (+ =0, and E constant.) However, 
Sturm-Liouville theory for a set of coupled differential equations is well established 
(Birkhoff 1908, Tamarkin 1927), and orthogonality, as well as completeness, follows 
immediately from the results obtained by these authors. 

Though the problem of this paper could be analysed with the well established 
Sturm-Liouville theory for coupled differential equations, we prefer to derive the 
desired completeness and expansion relations by a technique which is closely related 
to the function theoretical methods used by Birkhoff (1908) and Titchmarsh (1970, ch 
I). By doing so we are able to obtain a class of possible expressions for the expansion 
coefficients, which might be very useful for applications. For example, the analysis of 
scattering and transmission problems generated by a cylindrical fibre heavily depends 
on the possibility to obtain explicit expressions for the expansion coefficients and their 
approximate evaluation (Tamir 1979, ch 11). If, however, we have the possibility to 
choose from a class of different expressions for the expansion coefficients, we can 
choose the most convenient expression. This possibility might lead to an improvement 
of the approximations used for a particular scattering or diffraction problem. 

It is, moreover, interesting to observe that the completeness and orthogonality 
relations derived in this paper (equation (2.37)) differ from the usually postulated one, 
namely equation ( l . l ) !  

2. Calculational procedure 

Maxwell’s equations, together with the material equations, read as 

V x E = -aB/at, V x H = j+aD/at, V - B = O ,  V * D = p ,  
(2.1~1, b, c, d )  

j = a( r)E, B = p ( r ) H ,  D = E(r)E.  (2.1e3-t 8) 
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The functions E ,  p and U depend explicitly on the distance r, and are supposed to be 
piecewise once continuously differentiable functions of r in the interval 0 d r d 00, 

which are constant for values of r 3 b ( b  denotes the radius of the fibre): 
E(r) = Eo,  d r )  = 00, r z  b, 

= Po. 

From (2.la,  b, e,J g )  we derive a vector differential equation for E :  

We will also need the relation 

V . [ u ( r ) E + ~ ( r ) a E / a t ]  = 0 ,  (2.4) 
which is obtained by taking the divergence of equation (2.lb) and inserting (2.le, g) .  
We will consider electromagnetic fields such that 

( 2 . 5 ~ )  

H = H( r ;  p )  exp( -iwt + i l4 + ipz), (2 .5b)  

The frequency w may become a complex number, which means that, with the appropri- 
ate choice for the imaginary part of w, time decaying fields can be considered. The 
number p can take any complex value and will play the role of the propagation 
parameter. 

E = E (  r ;  p )  exp( -iwt + i l4 + ipz), 

1=0,*1,*2 ) . . . .  

Equation (2.3) can be written as 

V ( V . E )  - V 2 E  +V( ln  w )  x (V x E )  =iwpaE - w ’ p ~ E .  (2.6) 
The proper interpretation of the operator V 2 E  in an arbitrary orthogonal coordinate 
system is e.g. given by Morse and Feshbach (1953) (table finishing ch I), and reads 
for a cylindrical coordinate system as 

The relation (2.4) reads as 

i a  i a  a 
r a r  r 34 az 
- - [ r ( u - i w ~ ) E , ]  +- - [ (a- iws)E~]+-[(u - im)E , ]  = 0. (2.8 

The r and z components of equation (2.6) are 

a 
az 

-(E,)+-(E,) 

a 
+- ( lnp)  

a r  

= iwpuE, - W ’ E ~ L E , .  (2.10) 
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Eliminating the 4 component E, of the electric field using (2.8), and inserting (2.5a), 
leads to 

S + 2  2 a d2E, 3 aE -+- -2- 
ar2 r a r  r a r  p2E, - E, + - Er-[ l n ( a  - i w s  )I  

r 

= ( - w 2 s p  + i w p u ) E ,  (2.11) 

a’€, 1 aE, 
ar2  r a r  a r  -+- --p2E, 

=(-o‘ep+iwpu)E, .  (2.12) 

Equations (2.11) and (2.12) constitute a set of coupled differential equations of second 
order for the functions E, and EZ. Some of the properties of its solutions which we 
will need for the expansion theorem are given by the lemma below; i.e. the lemma 
shows the existence of solutions to (2.11) and (2.12) which are equivalent to the Jost 
function solutions, occurring in potential scattering theory. 

We will formulate the completeness-expansion theorem for the modes of the fibre 
in a finite interval 0 r < +m, for mathematical 
convenience. The infinite case is then obtained by letting a +,CO, and the appropriate 
completeness-expansion theorem for this case is stated in corollary 1, following the 
theorem. 

r s a, instead of the infinite interval 0 

Lemma. The set of coupled ordinary differential equations has solutions Ei:,’:j(r; p )  
in the interval 0 r a such that 

IE;,%r; P)l = exp[-Im(P)rl}, if Im p 3 0, (2.13) 

IEL?:(r; @ ) I  = O W ” 2  exp[Im(P)rll ,  if Im p S 0. (2.14) 

The functions E I,’? + E are entire functions of p, whereas the functions E :,’: and E 1:; 
are analytic in the complex P-plane with the exception of the point p = 0, which is a 
branch point. 

Proof: We rewrite (2.11) and (2.12) as a set of coupled integrodifferential equations: 

Ey32)( r ;  p )  = Hi’s2’(pr)+ 

2 a 2ip 
r r2  a r  r’ 

--E,( r ’ ) l { l n [ a (  r’) - iwe( r’)]} --Ez( r’) 

a a 
ar’  a r’ --[E,( r’)]-{In[ a( r’) - iws( r’)]} 

+ [iwp( r ’ ) a (  r’) - U * & (  r’)p(r’)]Er( r‘) ( 2 . 1 5 ~ )  
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a 
ar 

E:,”( r; p )  = H!’,*’(pr) + -$E,( r’) y ln[u(r’) - i m (  r’)] 

+ [ iup ( r’)a( r‘) - u 2 e  ( r ‘ )p  ( r‘)] E,( r’) dr‘, (2.156) 

where G denotes the Green function to Bessel’s equatioc which is regular at the origin, 
zero if r ’ s  r, and bounded at infinity for real values of p :  
G ( r , r ’ ; p ) = O ,  if r ’ s  r, ( 2 . 1 6 ~ )  

= H!’)(pr‘)H\*’(pr) - H:2)(pr’)H{’)(pr),  if r’ 3 r. (2.16 b )  

The coupled set of integrodifferential equations ( 2 . 1 5 ~ )  and (2.156) is easily rewritten 
as a set of coupled Volterra integral equations on integration by parts and observing 
that by virtue of (2.15a), (2.156) and (2.16a), 

I 

G(r,  r ;  P )  = 0, 

EJ’-*’(a; p )  = ~ i ’ * ” ( p a ) ,  
(2.17) 

E:’.*’(a; p )  = H/’ ,*’ (pa) .  
We therefore obtain 

a a 
ar ar  

XI: G(r,  r’; p ) y ( E r ( r ’ ) ) y { l n [ ~ ( r ‘ ) - i w & ( r ’ ) ] }  

a 
aa 

= H!’32’(pa)-{ln[cT(a) - i u ~ ( a ) ] } G ( r ,  a ;  p )  

a 
-]:;[G(r, r’; p)]Er(r’)-,{1n[~(r’)-iu&(r‘)]}dr’, 

ar  (2.18) 

a 

a 

= H!’32’(Pa)G(r, a ;  P)G[ln  d a ) l  

(2.19) 

which, inserted into ( 2 . 1 5 ~ )  and (2.156), leads to the desired set of coupled Volterra 
integral equations of the second kind. 

The asymptotic behaviour of e.g. E:’) for large positive values of the imaginary 
part of p is deduced from the asymptotic expansions of the Hankel functions: 

H{’,”(pr) = - exp[*i(pr-+-i.rr)] [ 1 + 0  (;)I - , O s a r g p s 2 . r r .  

) - 5.“ $( G(r,  r’; P)$[ln P(r’)I  Ez(r’) dr’, 

(2.20) 
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Equation (2.16b) yields 

2 
G( r, r‘; P )  =-( rr‘)-‘’* sin P ( r  - r ‘ )  

77 
OS arg P s 277. (2.21) 

We introduce two functions e,( r ;  P )  and e,( r ;  P )  such that 

W r ;  P )  = H ! l ) ( r P ) e r ( r ;  P ) ,  , E y ) ( r ;  p )  = H j ’ ) ( r P ) e L ( r ;  p ) .  (2.22) 

If we insert (2.22) into ( 2 . 1 5 ~ )  and (2.15b), and use equations (2.18) and (2.19), we 
obviously end up with a coupled set of Voltena integral equations of the second kind 
for the functions e, and e,. However, the functions e, and e, are bounded functions 
for P if IPI+m and 0 s a r g p s . r r :  

ler(r; P)I < M, l 4 r ;  P)I < M, 

IPI +CO, 0 s arg P s 77, O s r S a ,  (2.23) 

where M denotes a positive number independent of r and P. 
The property (2.23) is proven by inserting (2.22) into ( 2 . 1 5 ~ )  and (2.15b), using 

equations (2.18) and (2.19) and dividing both sides of the resulting equations by 
H i 1 ) ( @ ) .  If we then insert the asymptotic expansion (2.20) with respect to /3 for the 
Hankel function of the first kind into the resulting set of equations, we observe that 
we end up with a set of coupled Volterra integral equations of the first kind for the 
functions e, and e, whose kernels either tend to zero if IPI + CO, 0 S arg P S T ,  or tend 
to a function of r and r’ independent of P. The inhomogeneous term becomes 1 .  We 
consider as an example the term 

(’ r’ L[G(~, ar’ r’;  P ) I ) E ~ ( ~ ’ ) [ H ~ ” ( P ~ ) I - ~  = + ( r ,  r’; P ) ,  0 s  r S  r ’ s  a. (2.24) 

Inserting (2.20) and (2.22) into (2.24) yields 

$ ( r ,  r ’ P )  = (2/77)e,(r’; p ) ( r ’ ) -1Y’2[1  +0(1/p)]. (2.25) 

The set of coupled Voltena equations for the functions e r ( r ;  P )  and e z ( r ;  p )  whose 
kernels tend to functions of r and r‘ but are independent of p can always be solved 
by a Liouville-Neumann series containing iterated kernels. This series converges 
absolutely and uniformly for large values of IpI,OS arg p S T,  because there exists an 
absolutely converging comparison series 

n = o  f 5, n 

where 

(2.26) 

(2.27) 

(see the appendix, equations (A6)-(A10)). 
The summation is to be extended over all the kernels K j  occurring in the set of 

integral equations for e, and e,. 
The kernels Kj tend either to zero or to a function independent of P so that the 

comparison series tends uniformly in P to a limit if IpI tends to infinity, 0 4 arg p s T. 

The Liouville-Neumann series for e, and e, therefore converges uniformly in P to a 
function independent of P, because a series in comparison with an absolutely and 
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uniformly convergent series converges itself uniformly in a parameter like p, and limit 
and summation can be interchanged. We therefore showed that the Liouville-Neumann 
series for e, and e, tend to a function independent of p if p + a, 0 s arg /3 s T because 
we can interchange summation and liml,+m and can therefore take the values of the 
iterated kernels corresponding to IpI = a, 0 < arg p =S T. This proves equation (2.23). 

This completes the proof of equation (2.13). We similarly prove equation (2.14) 
introducing the functions e:2) and e?' by 

~ p ' ( r ;  p )  = H$2)(rp)ey)(r; p ) ,  (2.28) 

We will now prove the analyticity of the functions E$,'i2)(r; p )  for all complex values 
of p, except p = O .  Inserting 

kfj',2'(rp) = Jl ( rp)*iNl(rp) ,  (2.29) 

E y ' ( r ;  p )  = H j 2 ) ( r p ) e y 2 ) ( r ;  p ) .  

into (2.166) shows that the Green function G(r, r';  p )  is an entire function of p because 
.Il(@) is an entire function of p for integer values of 1. Equations (2.15a), (2.15b), 
(2.18) and (2.19) therefore show that the kernels of the integral equations are entire 
functions of p. This implies, however, that the resolvent kernel, r (appendix, equation 
(A7)), is also an entire function of p because, as we already remarked above, there 
exists an absolutely convergent comparison series which converges uniformly for all 
values of p belonging to any bounded domain D of the complex p plane. The uniform 
convergence follows from the fact that we obtain a comparison series Vp E D taking 
M = {max M(p):  p E D}. 

The solution of equations ( 2 . 1 5 ~ )  and (2.156) can be written as (see the appendix) 

(2.31) 

where the dyadic I' is an entire function of p. Equation (2.29) therefore shows that 
E ( 1 ) - E ( 2 )  is an entire function of p because the Bessel function J l ( p r )  is an entire 
function of p for integer values of I and 

r ;  p )  = Hi192)( r p )  + r( r, r'; p ) H ~ ' * * ' (  r ' p )  dr', 1: 
2 ~ , ( p r )  = ~ $ " ( p r )  + ~ ! * ' ( p r ) .  (2.32) 

Equation (2.31) also shows that the functions E " * 2 ' ( ~ ;  p )  are analytic in the complex 
p plane with the exception of the point p = 0 where they have a logarithmic singularity 
because the Hankel functions of the first and second kind show this behaviour (see 
equations (2.29) and (2.30)). 

We are now prepared to prove the core results of this paper, namely a class of 
expansion theorems for the field vectors E ,  and E,. 

Theorem. Let E r ( r ;  p )  and Ez(r ;  p )  denote solutions to equations (2.11) and (2.12) in 
the interval 0 s r < a which are regular at the origin, for which we choose the functions 
E:,':+ E!:', defined by equations (2.15a), (2.15b), (2.18) and (2.19): 

E,,, = E is1: + E !::. (2.33) 
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Let R , ( P ;  a )  and R 2 ( P ;  a )  denote functions such that 

(2.34) 

is a meromorphic function of P andt  

R d P ;  a )  = O[P e x p ( W a ) l ,  IPI + CO, OS arg P S 27r. (2.35) 

Suppose that the numbers P, denote the zeros of R I  + R2: 
R,(Pj;  a)+R2(Pj ;  a)=O, (2.36) 

which are all supposed to be simple. Then the following completeness relations hold 
true: 

(2.37) 

where the summation is to be taken over all numbers Pj  satisfying (2.36). 

Pro05 We consider the functions 

and 

[ : f ( r f ) ~ ( r f ;  P, a)dr’Er,z(r;  P ) = ~ 2 ( r ;  Pya),  (2.39) 

where f( r‘)  denotes a function of bounded variation defined on the interval 0 S r ’ s  a, 
together with the integrals 

(2.40) 

The numbers c, tend to infinity if n + 0;) in such a way that the circle IPI = c, passes 
between two consecutive zeros Pj  and P j + , .  The function E,,C is a meromorphic 
function of P so that the theorem of residues leads to 

The prime denotes differentiation with respect to pj and the summation is to be extended 
over all zeros Pj  whose modulus is smaller than c,. We will now evaluate the integrals 
(2.41) and (2.42) on the contour. Inserting the asymptotic expansions (2.13), (2.14) 
and (2.35) into (2.38) and (2.39) yields 

(rr’)-”*[exp ip sgn(Im P ) ( r -  r’)f(r’) dr‘] [ 1 + 0  (33 - , (2.43) 

(rr’)-’”[expip sgn(1m P ) ( r ‘ - r ) f ( r ’ )  dr‘] 

Os arg P S 277. (2.44) 

tNote  that a possible choice is provided in the second corollary 



Completeness relations for EM modes of cylindricalfibre 345 

The integrands of equations (2.43) and (2.44) give a non-negligible contribution only 
if ( p ( + a  near the point r ‘=  r which can be estimated by integration by parts. The 
result is (Hoenders 1978, Titchmarsh 1970, P 4.9) 

Inserting (2.45) and (2.46) into (2.41) and (2.42) yields 
I \ : i ( r )  = (rr)-’f(r)[I  +O(I/C,)] .  

Combination of (2.41), (2.42) and (2.47) yields 

I \ , ) ( r )  + I y ) ( r )  

= (Tr)-lf(r)[l +O(l/c,)I 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

which proves equation (2.37) if c, + CD because this relation has to be valid for all 
functions f ( x )  of bounded variation. 

(2.49) 

if a tends to infinity (Stone 1928, Titchmarsh 1970, ch 3 and references cited). The 
density function p ( P )  can be determined from the limiting form of the factor 

(2.50) R , ( P j ;  a )  
’ ~ [ R I ( P , ;  a )  + R,(Pj; a11” 

if a+m. 
The expansion (2.49) usually contains a continuous and discrete part, which in 

practice can usually be determined rather easily as one knows the asymptotic expansions 
of the functions involved if a tends to infinity. 

Corollary 2. The conditions of the theorem are satisfied choosing for the functions R1 
and R2 the functions E:,:’(a; P ) ,  resp. EY;(a;  P ) .  We then obtain 

3. Discussion 

The aim of this paper was to prove the often postulated completeness and orthogonality 
relations for the modes of a fibre with a radially dependent index of refraction. This 
leads to a completeness relation, namely equation (2.37), and expansion coefficients, 
namely equation (2.48), which differ from those derived from equation ( 1 . 1 ) :  the 
expansion coefficients occurring in equation (2.48) are uncoupled in the field com- 
ponents E, and E ,  whereas the orthogonality condition (1.1) leads to expansion 
coefficients which are coupled in the field components E, and E,. 
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This difference i s  very interesting and probably very useful for the analysis of 
scattering and diffraction problems. 
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Appendix. The solution of a coupled set of Volterra integral equations of the second 
kind 
We consider the following set of coupled Volterra integral equations of the second kind: 

Equation ( A l )  has been considered by Weatherburn (1915), who showed that the 
theory of equation (Al)  is the same as the theory for a single equation of this type, if 
we only rewrite ( A l )  in vector notation. We will give a short survey of the method 
and refer for mathematical details to Weatherbum. 

Let i l ,  iz, . . , , i N  denote the unit vectors of a Cartesian system, and suppose that 
the vectors f and g and the dyadic K are defined by 

N N N N  

K = $i&. 
j=l 1=1 

g =  ijgj, 
j = 1  

f= i j J ; ,  
j=l 

The dyadic product of K with a vector f is a vector h whose j th  component is given by 

We similarly define the ( j ,  I )  component of the dyadic product K L by 
N 

1'= 1 
(K . L)j,I = C Kj,l~L~,I. 

Equation ( A l )  then reads as 

f (x)=g(x)+[ 'K(x,x ' ) -  X f(x')dx'. 

This equation can be solved by iteration: 

f ( x )  = d x )  + [: r(x,  x') dx', 

if 
oc 

r ( x ,  x') = K(x, x') + 

K'"'(x, x') = [: K(x, x,) - K("-')(X,, x') dx,. 

K(")(x, x'), 
n = l  
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The Liouville-Neumann series (A7) has a comparison, as in the scalar case, with an 
absolutely convergent series S :  

M "  
n = l  n .  

s =  1 ,(x-a)", 

if 

M = max]K(x, x')] b s x s x ' ~  a (A101 

so that the resolvent r exists for all values b S x S x ' S  a and is represented by the 
Liouville-Neumann series (A7). 
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